

Brake Systems

KTR-STOP[®] EMB-STOP SBT Systems

> 2024/25 www.ktr.com

In the middle of the action: the KEC

In September 2023 we opened the "KTR Exhibition Center", in brief KEC, at our headquarters in Rheine. The generously glazed building with a surface of about 750 square metres is to be used in a variety of ways: as an exhibition space for KTR products, for customer and information events, workshops and trainings, but also as a meeting point for the KTR staff providing a kiosk and a terrace. KTR's CEO Nicola Warning: "The KEC is a multifunctional building providing a new platform for digital and analogue communication with customers, staff and stakeholders – whilst giving the staff a fancy meeting point that increases the attractiveness of their work location."

Corporate Responsibility at KTR

Together for sustainable transformation:

With the new Corporate Responsibility department we meet the growing requirements of the market environment and regulatory specifications: The task of our team of HSE, Compliance and ESG officials is to ensure legal compliance (Compliance), strengthen the commitment for environment, social issues and governance (ESG) and improve the standards for health, safety and environment (HSE) in KTR Systems GmbH and its supply chain. Within the framework of reports, certifications, audits and ratings we make our progress measurable and will announce it to the public on our website in the future.

Do you have any questions about the subjects of compliance, occupational safety, environmental protection, carbon footprint, Supply Chain Due Diligence Act or sustainability reporting/CSRD?

Please contact our Corporate Responsibility team at: responsibility@ktr.com

DID YOU KNOW

that couplings, hydraulic components and coolers are part of our scope of supply, too? Details are available at ktr.com.

Balhousings Damping elements Cooling systems Oil tanks

POSSIBLE COMBINATIONS

Our brake systems can be combined with our drive components.

The Competence Center for Brake Systems: That is where KTR brakes learn to grip better.

Opposites attract: the brake portfolio of the drive specialist

Driving and braking technology: What most companies consider as opposites, KTR estimates as an ideal supplement. Many years ago KTR started to project and distribute brakes. But you trust most in those things you developed yourselves. That is why KTR was not satisfied with distribution only, but made use of its decades of know-how and engineering experience to considerably improve the hydraulic brake system in many respects. By taking over EM Brake Systems in 2013, electromechanical brake systems have meanwhile completed KTR's portfolio. As a result KTR is in a position to provide the ideal brake system for every demand. Driving and braking technology from one single source - the customers are in good hands with KTR.

"What can actually not be slowed down? Our innovative capacity."

Dr. Norbert Partmann, KTR Brake Systems

An innovative ambience for innovative ideas

KTR-STOP[®] and EMB-STOP - these two brake systems have been consolidated since 2014. We are specifically proud of the location: the "Competence Center for Brake Systems". It is located in Schloß Holte-Stukenbrock in East Westphalia and the head office of the new KTR Brake Systems GmbH.

By the way: The Competence Center well deserves its name. Since KTR develops all measures dealing with brake systems in these state-of-the-art premises. The brake components of both series are developed, designed and tested here. A special cryogenic cooling chamber allows for tests even with temperatures down to -50 °C making the brakes ready for wind and weather in this way.

Those who value KTR as a manufacturer will love us as a partner.

KTR provides the mechanical and plant engineering with an extensive portfolio of high-quality drive and hydraulic components as well as braking and cooling systems. We are pleased to be at your service during the designing stage and develop tailor-made solutions for you. Perfectly organized logistics, global presence via 24 subsidiary companies and more than 90 distribution partners along with an international network consisting of 7 production sites are the prerequisite for quick delivery. When it comes to service we ensure short distances along with competent and personal support.

"Innovation and tradition are the key components of our product portfolio and KTR's corporate culture."

7

Nicola Warning, CEO of KTR

Wherever motion is essential, we have the right answer.

Mechanical components are and will remain essential in drive technology. The industry's demands on components grow continuously: energy efficiency, power density, ease of servicing and electronification. Our portfolio includes couplings and torque limiters, clamping sets and universal joints as well as torque measuring shafts.

Brake Systems

Our hydraulic and electromechanical brake systems are globally used in various industries. Customer preference and parameters of the application decide upon the selection of the right brake.

Hydraulic components

For almost 50 years we have provided the industry with a continuously growing range of hydraulic components from our in-house development and manufacturing: accurate selection, high-quality processing, quick availability.

Cooling systems

As a customised product or standard solution, multimedium or oil/air cooler, for mobile machines or stationary hydraulics, optionally available as a marine or ATEX version, powerful and efficient.

PART OF EXCELLENCE

Wind power

Construction machinery

Agriculture

Pumps and compressors

Automation

Machine tools

Hydraulics

Marine

General drive technology

Gensets

SUMMARY OF PRODUCTS/INDUSTRIES

	WIND POWER Gearless wind turbines Wind .	Local Power Brids CONSTRUCTION AND AGRICUL-	Excavators Road rollers Ctushers	Combine harvesters Tank spreaders PUMPS AND COMPDE	Compressors Pumps Cooling	INDOOR MATERIALS HANDLING Conveying and storage Food c.	Packaging machinery Packaging machinery
							≝→
PASSIVE FLOATING CALIPER BRAK	ES						
KTR-STOP [®] XS-xx-F KTR-STOP [®] S-xx-F KTR-STOP [®] M-xxx-F KTR-STOP [®] M-xxx-F							
KTR-STOP* XL-xxx-F KTR-STOP* XXL-xxxx-F							
EMB-STOP XS-P-xx-F EMB-STOP XS-P-xx-F EMB-STOP S-P-xx-F Soft-Braking EMB-STOP S-P-xx-F Fast-Braking EMB-STOP M-P-xx-F Fast-Braking							
Hydraulic brake system				_			
KTR-STOP® XS-A-F KTR-STOP® S-A-F KTR-STOP® M-A-F							
Electromechanical Prake system EMB-STOP XS-A-xx-F							
EMB-STOP 5-A-X-F EMB-STOP L-A-XXX-F							
Hydraulic brake system KTR-STOP [®] XS-xx KTR-STOP [®] XS-xx KTR-STOP [®] M-xxx KTR-STOP [®] Light-xxx KTR-STOP [®] Light-xxx							
KTR-STOP® XL-xxx ACTIVE FIXED CALIPER BRAKE							
Hydraulic brake system		_		_			
KTR-STOP® L light-A YAW BRAKES							
Hydraulic brake system KTR-STOP [®] YAW XS KTR-STOP [®] YAW S KTR-STOP [®] YAW M							
KTR-STOP® YAW L THRUSTER BRAKES							
Electrohydraulic brake system KTR-STOP [®] TB S KTR-STOP [®] TB T							
Electrohydraulic thrusters KTR-STOP [®] TB thruster							
STOP-BLOCK-TURN-SYSTEM SBT System							
IntelliRamp* EMB-STOP Control Box							
ROTOR LOCK Hydraulic system							
KTR-STOP® RL S KTR-STOP® RL M							
EMB-STOP RL S EMB-STOP RL M							
KTR-STOP® NBS							

Clamping forces of brake systems

e page 34

Active floating caliper brakes

Clamping forces [kN]

Hydraulic KTR-STOP®	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900
XS-A-F																Ş	ee pag	e 36	
S-A-F																St	ee pag	e 38	
M-A-F																S	ee pag	e 40	

Electromechanical EMB-STOP	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900
XS-A-xx-F																S	ee pag	e 42	
S-A-xx-F																s	ee pag	e 44	
L-A-xx-F																 \$	ee pag	e 46	

Clamping forces of brake systems

Hydraulic KTR-STOP [®]	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900
M-D																	see pa	ge 60	
L light-A																	see pa	ge 62	

Yaw brakes

Clamping forces [kN]

 Hydraulic KTR-STOP*
 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900

 YAW XS
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100<

Thruster brakes	Braking torque [kNm]																
Electrohydraulic KTR-STOP® TB	1 2								10	11	12	13	14	15	16	17	18
тв с																	
твт														see	e page	72	
2 4 1														see	e page	74	

TABLE OF CONTENTS

PASSIVE FLOATING CALIPER BRAKES

Hydraulic brake system

KTR-STOP [®] XS-xx-F	18
KTR-STOP [®] S-xx-F	20
KTR-STOP [®] M-xxx-F	22
KTR-STOP [®] XL-xxx-F	24
KTR-STOP [®] XXL-xxxx-F	26
Electromechanical brake system	
EMB-STOP XS-P-xx-F	28
EMB-STOP S-P-xx-F Soft-Braking	30
EMB-STOP S-P-vy-E Fast-Braking	30

ACTIVE FLOATING CALIPER BRAKES

EMB-STOP M-P-xx-F Fast-Braking

Hydraulic brake system

KTR-STOP [®] XS-A-F	36
KTR-STOP [®] S-A-F	38
KTR-STOP [®] M-A-F	40
Electromechanical brake system	
EMB-STOP XS-A-xx-F	42
EMB-STOP S-A-xx-F	44

PASSIVE FIXED CALIPER BRAKES

Hydraulic brake system 48 KTR-STOP® XS-xx 50 KTR-STOP® S-xx 50 KTR-STOP® M-xxx 52 KTR-STOP® Light-xxx 54 KTR-STOP® Light-xxx 56 KTR-STOP® XL-xxx 58

ACTIVE FIXED CALIPER BRAKE

Hydraulic brake system	
KTR-STOP [®] M-D	60
KTR-STOP [®] L light-A	62

YAW BRAKES

Hydraulic brake systemKTR-STOP® YAW XS64KTR-STOP® YAW S66KTR-STOP® YAW M68KTR-STOP® YAW L70

THRUSTER BRAKES

34

Electrohydraulic brake system KTR-STOP® TB S KTR-STOP® TB T	72 74
Electrohydraulic thrusters KTR-STOP [®] TB thruster	76
STOP-BLOCK-TURN-SYSTEM SBT System	80
ELECTRICAL CONTROL SYSTEMS EMB-STOP Control Box IntelliRamp [®]	81 82

ROTOR LOCK

Hydraulic system KTR-STOP® RL S KTR-STOP® RL M	84 86
Electromechanical system EMB-STOP RL S	88
EMB-STOP RL M	90

Hubs with brake disksKTR-STOP® NBS92

KTR-STOP®

IntelliRamp[®]

KTR-STOP® XS-xx-F Passive floating caliper brakes

Hydraulic brake system

KTR-STOP [®] XS-xx-F									
Total weight 1)	Approx. 18 kg	Max. operating pressure	200 bars						
Width of brake pad	70 mm	Thickness of brake disk 3)	20 mm, 30 mm						
Surface per brake pad organic	8,000 mm ²	Pressure connection	G 1/8						
sinter	5,800 mm ²	Leakage oil bore	G 1/8						
Max. wear per brake pad	5 mm	Floating range on axes - towards mounting surface	5 mm						
Rated coefficient of friction 2)	μ = 0.4	Floating range on axes - away from mounting surface	5 mm						
Total brake piston surface - complete brake	11 cm ²	Min. diameter of brake disk ØDA	300 mm						
Volume with 1 mm stroke - complete brake	1.1 cm ³	Operating temperature	-20 °C to +50 °C						

¹⁾ Dimensions and weight depending on thickness of brake disk.

³ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR. ³ Other thickness of brake disk available on request.

Ondening	KTR-STOP®	XS ·	- 6 -	F	B ·	- 20
example:	KTR brake	Size of brake	Clamping force	Floater	Variant	Thickness of brake disk

Brake types										
Ducks tures	Clamping force	Loss of power 3)	Opening pressure	Braking	torque [Nm] with brake disk	Ø [mm]				
Brake type	F _c [kN]	[%]	[bar]	315	560	800				
KTR-STOP® XS-2-F	2	11.0	30	180	370	570				
KTR-STOP® XS-3-F	3	5.5	40	270	560	850				
KTR-STOP® XS-4-F	4	3.0	50	360	750	1140				
KTR-STOP® XS-5-F	5	8.5	70	450	940	1420				
KTR-STOP [®] XS-6-F	6	6.5	80	540	1130	1710				
KTR-STOP® XS-7-F	7	4.5	90	640	1320	1990				
KTR-STOP® XS-8-F	8	16.5	120	730	1510	2280				
KTR-STOP® XS-9-F	9	12.0	130	820	1700	2570				
KTR-STOP® XS-10-F	10	10.0	140	910	1890	2850				
KTR-STOP® XS-11-F	11	8.5	150	1000	2080	3140				
KTR-STOP® XS-12-F	12	11.0	160	1090	2270	3420				
KTR-STOP® XS-13-F	13	9.5	170	1190	2460	3710				
KTR-STOP® XS-14-F	14	8.5	180	1280	2650	3990				
KTR-STOP® XS-15-F	15	8.0	190	1370	2840	4280				

³⁾ With a stroke of 1 mm (0.5 mm wear of brake pad on each side)

Calculation of brake disk

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP® S-xx-F Passive floating caliper brakes

Hydraulic brake system

KTR-STOP [®] S-xx-F								
Total weight 10 - 55 kN	Approx. 90 kg 1)	Max. operating pressure	200 bars					
Total weight 60 - 80 kN	Approx. 95 kg 1)	Thickness of brake disk 3)	20 mm, 30 mm, 40 mm					
Width of brake pad	125 mm	Pressure connection	G 1/4					
Surface per brake pad organic	28,700 mm ²	Leakage oil bore	G 1/8					
sinter	26,800 mm ²	Floating range on axes - towards mounting surface	5 mm					
Max. wear per brake pad	6 mm	Floating range on axes - away from mounting surface	10 mm					
Rated coefficient of friction 2)	μ = 0.4	Min. diameter of brake disk ØDA	500 mm					
Total brake piston surface - complete brake	69 cm ²	Operating temperature	-20 °C to +50 °C					
Volume with 1 mm stroke - complete brake	6.9 cm ³							

¹⁾ Dimensions and weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

Ordening	KTR-STOP®	S ·	- 40 -	F	B ·	- 30
example:	KTR brake	Size of brake	Clamping force	Floater	Variant	Thickness of brake disk

			Brake types			
Droke tune 3)	Clamping force	Loss of power 3)	Opening pressure	Braking	torque [Nm] with brake dis	kØ[mm]
Blake type	F _c [kN]	[%]	[bar]	500	710	1000
KTR-STOP® S-10-F	10	4.5	20	1400	2300	3400
KTR-STOP® S-15-F	15	2.0	30	2200	3400	5200
KTR-STOP® S-20-F	20	4.5	40	2900	4600	6900
KTR-STOP® S-25-F	25	5.0	50	3700	5800	8700
KTR-STOP® S-30-F	30	3.5	60	4400	6900	10400
KTR-STOP® S-35-F	35	8.0	80	5100	8100	12100
KTR-STOP® S-40-F	40	6.5	90	5900	9200	13900
KTR-STOP® S-45-F	45	6.0	100	6600	10400	15600
KTR-STOP [®] S-50-F	50	5.5	100	7400	11600	17400
KTR-STOP® S-55-F	55	5.0	110	8100	12700	19100
KTR-STOP® S-60-F	60	7.0	130	8800	13900	20800
KTR-STOP® S-65-F	65	6.0	140	9600	15000	22600
KTR-STOP® S-70-F	70	5.0	150	10300	16200	24300
KTR-STOP® S-75-F	75	4.5	160	11100	17400	26100
KTR-STOP® S-80-F	80	5.0	170	11800	18500	27800

 $^{\scriptscriptstyle 3)}$ With a stroke of 1 mm (0.5 mm wear of brake pad on each side)

Calculation of brake disk

up to $ØD_A = 1000 \text{ mm}$

D_{C max.} = D_A - 305

D_{av} = D_A - 130

from $ØD_A = 1800 \text{ mm}$ $D_C \text{ max.} = D_A - 285$ $D_{av} = D_A - 110$

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP® M-xxx-F Passive floating caliper brakes

Hydraulic brake system

KTR-STOP® M-xxx-F							
Total weight ≤ 120 kN	Approx. 220 kg 1)	Max. operating pressure	200 bars				
Total weight 125 - 180 kN	Approx. 235 kg 1)	Thickness of brake disk 3)	30 mm, 40 mm, 50 mm				
Width of brake pad	200 mm	Pressure connection	G 1/4				
Surface per brake pad organic	57,900 mm ²	Leakage oil bore	G 1/8				
sinter	53,500 mm ²	Floating range on axes - towards mounting surface	5 mm				
Max. wear per brake pad	8 mm	Floating range on axes - away from mounting surface	below 120 kN = 10 mm				
Rated coefficient of friction 2)	μ = 0.4		above 120 kN = 5 mm				
Total brake piston surface - complete brake	137.4 cm ²	Min. diameter of brake disk ØDA	800 mm				
Volume with 1 mm stroke - complete brake	13.74 cm ³	Operating temperature	-20 °C to +50 °C				

¹⁾ Dimensions and weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

0 1 1	KTR-STOP [®]	M	- 100 -	F	B ·	- 40
example:	KTR brake	Size of brake	Clamping force	Floater	Variant	Thickness of brake disk

	Brake types										
Proko tuno	Clamping force	Loss of power 3)	Opening pressure	Braking	torque [Nm] with brake disk	Ø [mm]					
Блаке туре	F _C [kN]	[%]	[bar]	800	1500	2000					
KTR-STOP® M-60-F	60	6.5	60	14400	31200	43200					
KTR-STOP® M-70-F	70	5.0	70	16800	36400	50400					
KTR-STOP® M-80-F	80	4.0	80	19200	41600	57600					
KTR-STOP® M-90-F	90	8.5	100	21600	46800	64800					
KTR-STOP® M-100-F	100	7.0	110	24000	52000	72000					
KTR-STOP® M-110-F	110	6.5	120	26400	57200	79200					
KTR-STOP® M-120-F	120	8.5	130	28800	62400	86400					
KTR-STOP® M-130-F	130	5.0	140	31200	67600	93600					
KTR-STOP® M-140-F	140	4.5	150	33600	72800	100800					
KTR-STOP® M-150-F	150	7.5	165	36000	78000	108000					
KTR-STOP® M-160-F	160	7.0	180	38400	83200	115200					
KTR-STOP® M-170-F	170	6.5	190	40800	88400	122400					
KTR-STOP® M-180-F	180	6.0	190	43200	93600	129600					

³⁾ With a stroke of 1 mm (0.5 mm wear of brake pad on each side)

Calculation of brake disk

D_{av} = D_A - 200

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP® XL-xxx-F Passive floating caliper brakes

Hydraulic brake system

KTR-STOP [®] XL-xxx-F							
Total weight	Approx. 1080 kg 1)	Thickness of brake disk 3)	40 mm, 60 mm, 80 mm				
Width of brake pad	270 mm	Pressure connection	G 3/8				
Surface of each brake pad (organic/sinter)	76,800 mm ²	Leakage oil bore	G 1/4				
Max. wear per brake pad	6 mm	Floating range on axes - towards mounting surface	5 mm				
Rated coefficient of friction 2)	μ = 0.4	Floating range on axes - away from mounting surface	10 mm				
Total brake piston surface - complete brake	452 cm ²	Min. diameter of brake disk ØDA	1,500 mm				
Volume with 1 mm stroke - complete brake	45.2 cm ³	Operating temperature	-20 °C to +50 °C				
Max. operating pressure	200 bars						

¹⁾ Dimensions and weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

and a solution of	KTR-STOP®	XL -	- 600 -	F	A ·	- 60
xample:	KTR brake	Size of brake	Clamping force	Floater	Variant	Thickness of brake disk

C

Brake types									
Clamping force		Loss of power 4)	Opening pressure	Braking torque [Nm] with brake disk Ø [mm]					
Блаке туре 🦻	Brake type ³⁾ F _C [kN] [%] [bar]	[bar]	1500	3000	4000				
KTR-STOP® XL-400-F	400	4.5	130	198000	438000	598000			
KTR-STOP® XL-500-F	500	7.5	160	247000	547000	747000			
KTR-STOP® XL-600-F	600	6	190	296000	656000	896000			

³⁾ Other brake types on request ⁴⁾ With a stroke of 1 mm (0.5 mm wear of brake pad on each side)

Calculation of brake disk

 $D_{av} = D_A - 230$

Connection dimensions of brake

- Temperature sensor
- Alternative materials of brake pad

KTR-STOP® XXL-xxxx-F Passive floating caliper brakes

Hydraulic brake system

KTR-STOP® XXL-xxxx-F								
Total weight		Approx. 2200 kg	Volume with 1 mm stroke - complete brake	92.4 cm ³				
Width of brake pad		340 mm	Max. operating pressure	220 bars				
Surface of each brake pad	organic	238,700 mm ²	Thickness of brake disk 3)	60 mm, 80 mm, 100 mm, 120 mm				
	sinter metal	-	Pressure connection	G 3/8				
Max. wear per brake pad		8 mm	Leakage oil bore	G 1/4				
Rated coefficient of friction 2)		μ = 0.4	Min. diameter of brake disk ØDA	6,000 mm				
Total brake piston surface - complete brake		924 cm ²	Operating temperature	-20 °C to +50 °C				

¹⁾ Dimensions and weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

Oudering	KTR-STOP®	XXL ·	- 1000 -	F	A ·	- 80
example:	KTR brake	Size of brake	Clamping force	Floater	Variant	Thickness of brake disk

Brake types								
Brake type 3)	Clamping force F _C [kN]	Loss of power 4) [%]	Opening pressure [bar]					
KTR-STOP® XXL-800-F	800	6	125					
KTR-STOP® XXL-1000-F	1000	4.5	150					
KTR-STOP® XXL-1200-F	1200	4	175					

³⁾ Other brake types on request ⁴⁾ With a stroke of 1 mm (0.5 mm wear of brake pad on each side)

Calculation of brake disk

 $D_{av} = D_A - 330$

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

EMB-STOP XS-P-xx-F Passive floating caliper brakes

Electromechanical brake system

EMB-STOP XS-P-xx-F								
Total weight 1)		Approx. 28 kg	Floating range on axes - away from mounting surface	5 mm				
Width of brake pad		70 mm	Min. diameter of brake disk ØDA	300 mm				
Surface of each brake pad	organic	8,000 mm ²	Operating temperature	-20 °C to +50 °C				
	sinter metal	5,800 mm ²	Closing time	< 0.2 s				
Max. wear per brake pad		5 mm	Release time	3.5 s				
Coefficient of friction of pad, nominal value 2)		μ = 0.4	Size of industrial connector	Han 10B / Han 18EE (male)				
Min. clamping force		6 kN	Motor power	140 W				
Max. clamping force		12 kN	Motor voltage	400 VAC, 50 Hz				
Power loss with 1mm stroke (0.5 per side) 4)		~ 10%	Limit switch signals, standard	Released, wear				
Thickness of brake disk 3)		20 mm, 30 mm	Power of safety coupling - keeping the brake open	22 W @ 24 VDC				
Floating range on axes - towards mounting surfa	ice	5 mm						

¹⁾Weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.
 ⁴⁾ Each depending on the clamping force.

Calculation of braking force/braking

torque

$$F_{b} = F_{c} \cdot 2 \cdot \mu$$
$$M_{b} = z \cdot F_{b} \cdot \frac{D_{av}}{2}$$

= Braking force [kN]

= Clamping force [kN] F_{C}

Fb

z

 M_{b} = Braking torque [kNm]

= Number of brakes

 D_{av} = Effective diameter of brake [m]

Ordening	EMB-STOP	XS -	· P	- 12 ·	- F	B ·	- 30
example:	EMB brake	Size of brake	Passive	Clamping force	Floater	Variant	Thickness of brake disk

Calculation of brake disk

D_{av} = D_A - 86

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

EMB-STOP S-P-xx-F Soft-Braking Passive floating caliper brakes

Electromechanical brake system

EMB-STOP S-P-xx-F Soft-Braking								
Total weight 1)		Approx. 93 kg	Floating range on axes - away from mounting surface	2 mm				
Width of brake pad		95 mm	Min. diameter of brake disk ØDA	500 mm				
Surface of each brake pad	organic	19,500 mm ²	Operating temperature	-15 °C to +50 °C				
	sinter metal	14,500 mm ²	Closing time	0.5 s				
Max. wear per brake pad		5 mm	Release time	3 s				
Coefficient of friction of pad, nominal value 2)		μ = 0.4	Size of industrial connector	Han 10B / Han 18EE (male)				
Min. clamping force		30 kN	Motor power	260 W				
Max. clamping force		55 kN	Motor voltage	400 VAC, 50 Hz				
Power loss with 1mm stroke (0.5 per side) 4)		~ 10%	Limit switch signals, standard	Released, wear				
Thickness of brake disk 3)		30 mm, 40 mm	Power of safety coupling - keeping the brake open	20 W @ 24 VDC				
Floating range on axes - towards mounting su	face	2 mm						

¹⁾ Weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

4) Each depending on the clamping force.

Calculation of braking force/braking

torque

$$F_{b} = F_{c} \cdot 2 \cdot \mu$$
$$M_{b} = z \cdot F_{b} \cdot \frac{D_{av}}{2}$$

= Braking force [kN]

= Clamping force [kN] F_{C}

Fb

z

 M_{b} = Braking torque [kNm]

= Number of brakes

= Effective diameter of brake [m] Dav

Oudering	EMB-STOP	S ·	- P	- 50 ·	- F	B ·	- 30
example:	EMB brake	Size of brake	Passive	Clamping force	Floater	Variant	Thickness of brake disk

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

EMB-STOP S-P-xx-F Fast-Braking Passive floating caliper brakes

Electromechanical brake system

EMB-STOP S-P-xx-F Fast-Braking								
Total weight 1)		Approx. 170 kg	Floating range on axes - away from mounting surface	5 mm				
Width of brake pad		110 mm	Min. diameter of brake disk ØDA	500 mm				
Surface of each brake pad	organic	28,700 mm ²	Operating temperature	-30 °C to +50 °C				
	sinter metal	26,800 mm ²	Closing time	< 0.2 s				
Max. wear per brake pad		5 mm	Release time	< 0.5 s				
Coefficient of friction of pad, nominal value 2)		μ = 0.4	Size of industrial connector	Han 10B / Han 18EE (male)				
Min. clamping force		30 kN	Motor power	1.1 kW				
Max. clamping force		80 kN	Motor voltage	400 VAC, 50 Hz				
Power loss with 1mm stroke (0.5 per side) 4)		~ 10%	Limit switch signals, standard	Released, wear				
Thickness of brake disk 3)		30 mm, 40 mm	Power of safety coupling - keeping the brake open	80 W @ 24 VDC				
Floating range on axes - towards mounting surface	се	5 mm						

¹⁾ Weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.
 ⁴⁾ Each depending on the clamping force.

Calculation of braking force/braking

torque

$$F_{b} = F_{c} \cdot 2 \cdot \mu$$
$$M_{b} = z \cdot F_{b} \cdot \frac{D_{av}}{2}$$

= Braking force [kN]

Fb

z

= Clamping force [kN] F_C

 M_{b} = Braking torque [kNm]

= Number of brakes

Dav = Effective diameter of brake [m]

Ordening	EMB-STOP	S -	· P	- 50 ·	- F	B ·	- 30
example:	EMB brake	Size of brake	Passive	Clamping force	Floater	Variant	Thickness of brake disk

Connection dimensions of brake

- Various colours available
- Sensor indicating wear of pad
- Temperature sensor
- Alternative materials of brake pad

EMB-STOP M-P-xxx-F Fast Braking Passive floating caliper brakes

Electromechanical brake system

EMB-STOP M-P-xxx-F Fast Braking									
Total weight 1)		Approx. 345 kg	Floating range on axes - away from mounting surface	5 mm					
Width of brake pad		200 mm	Min. diameter of brake disk ØDA	800 mm					
Surface of each brake pad	organic	57,900 mm ²	Operating temperature	-30 °C to +50 °C					
	sinter metal	53,500 mm ²	Closing time	< 0.2 s					
Max. wear per brake pad		8 mm	Release time	< 0.5 s					
Coefficient of friction of pad, nominal value	2)	μ = 0.4	Size of industrial connector	Han 10B / Han 18EE (male)					
Min. clamping force		60 kN	Motor power	1.5 kW					
Max. clamping force		150 kN	Motor voltage	400 VAC, 50 Hz					
Power loss with 1mm stroke (0.5 per side)	4)	~ 10%	Limit switch signals, standard	Released, wear					
Thickness of brake disk 3)		30 mm, 40 mm, 50 mm	Power of safety coupling - keeping the brake open	100 W @ 24 VDC					
Floating range on axes - towards mounting	surface	5 mm							

¹⁾ Weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.
 ⁴⁾ Each depending on the clamping force.

Calculation of braking force/braking

torque

$$F_{b} = F_{c} \cdot 2 \cdot \mu$$
$$M_{b} = z \cdot F_{b} \cdot \frac{D_{av}}{2}$$

= Braking force [kN]

= Clamping force [kN] F_{C}

 F_{b}

z

 M_{b} = Braking torque [kNm]

= Number of brakes

= Effective diameter of brake [m] Dav

Ordening	EMB-STOP	M -	· P	- 50 ·	- F	B ·	- 30
example:	EMB brake	Size of brake	Passive	Clamping force	Floater	Variant	Thickness of brake disk

Calculation of brake disk

 $D_{av} = D_A - 200$ $D_{C max.} = D_A - 420$

Connection dimensions of brake

- Various colours available
- Sensor indicating wear of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP® XS-A-F Active floating caliper brakes

Hydraulic brake system

KTR-STOP® XS-A-F								
Total weight	Approx. 18 kg 1)	Max. operating pressure	105 bars					
Width of brake pad	70 mm	Thickness of brake disk 3)	20 mm, 30 mm					
Surface per brake pad organic	8,000 mm ²	Pressure connection	G 1/8					
sinter	5,800 mm ²	Leakage oil bore	G 1/8					
Max. wear per brake pad	5 mm	Floating range on axes - towards mounting surface	5 mm					
Rated coefficient of friction 2)	μ = 0.4	Floating range on axes - away from mounting surface	5 mm					
Total brake piston surface - complete brake	15.9 cm ²	Min. diameter of brake disk ØDA	300 mm					
Volume with 1 mm stroke - complete brake	1.59 cm ³	Operating temperature	-20 °C to +50 °C					
Max. clamping force	16.5 kN							

¹⁾ Weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

Braking torque [Nm] with brake disk Ø [mm]								
Brake disk Ø [mm]	315	560	800					
Braking torque [Nm]	1510	3120	4710					

Calculation of braking force/braking torque

$$M_{b} = z \cdot F_{b} \cdot \frac{D_{av}}{2}$$

 $F_b = F_c \cdot 2 \cdot \mu$

= Braking force [kN] Fb

= Clamping force [kN] F_{C}

Mb = Braking torque [kNm]

= Number of brakes z

= Effective diameter of brake [m] Dav

Ondering	KTR-STOP®	XS -	- A -	F	В	- 30
example:	KTR brake	Size of brake	Active	Floater	Variant	Thickness of brake disk

Calculation of brake disk

D_{av} = D_A - 86

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP® S-A-F Active floating caliper brakes

Hydraulic brake system

249,5¹ 425 380 Leakage oil Pressure connection bore G 1/4 <u>G 1/8</u> 100 14.5 249 ¥ 81,5 344

KTR-STOP® S-A-F							
Total weight	Approx. 76 kg 1)	Max. operating pressure	125 bars				
Width of brake pad	125 mm	Thickness of brake disk 3)	20 mm, 30 mm, 40 mm				
Surface per brake pad organic	28,700 mm ²	Pressure connection	G 1/4				
sinter	26,800 mm ²	Leakage oil bore	G 1/8				
Max. wear per brake pad	6 mm	Floating range on axes - towards mounting surface	5 mm				
Rated coefficient of friction 2)	μ = 0.4	Floating range on axes - away from mounting surface	10 mm				
Total brake piston surface - complete brake	44.2 cm ²	Min. diameter of brake disk ØDA	500 mm				
Volume with 1 mm stroke - complete brake	4.42 cm ³	Operating temperature	-20 °C to +50 °C				
Max. clamping force	55 kN						

¹⁾ Dimensions and weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

Braking torque [Nm] with brake disk Ø [mm]							
Brake disk Ø [mm]	500	710	1000				
Braking torque [Nm]	8100	12700	19100				

Calculation of braking force/braking torque

$$M_b = z \cdot F_b \cdot \frac{D_{av}}{2}$$

 $F_b = F_c \cdot 2 \cdot \mu$

= Braking force [kN] Fb

 F_{C} = Clamping force [kN]

Mb = Braking torque [kNm]

z = Number of brakes

Dav = Effective diameter of brake [m]

Oudening	KTR-STOP®	S ·	· A -	F	B ·	- 30
example:	KTR brake	Size of brake	Active	Floater	Variant	Thickness of brake disk

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP® M-A-F Active floating caliper brakes

Hydraulic brake system

Pressure connection G 1/4

KTR-STOP® M-A-F							
Total weight	Approx. 235 kg 1)	Max. operating pressure	115 bars				
Width of brake pad	200 mm	Thickness of brake disk 3)	30 mm, 40 mm, 50 mm				
Surface per brake pad organic	57,900 mm ²	Pressure connection	G 1/4				
sinter	53,500 mm ²	Leakage oil bore	G 1/8				
Max. wear per brake pad	8 mm	Floating range on axes - towards mounting surface	5 mm				
Rated coefficient of friction 2)	μ = 0.4	Floating range on axes - away from mounting surface	10 mm				
Total brake piston surface - complete brake	113 cm ²	Min. diameter of brake disk ØDA	800 mm				
Volume with 1 mm stroke - complete brake	11.3 cm ³	Operating temperature	-20 °C to +50 °C				
Max. clamping force	130 kN						

¹⁾ Weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

Braking torque [Nm] with brake disk Ø [mm]							
Brake disk Ø [mm]	800	1500	2000				
Braking torque [Nm]	31200	67600	93600				

Calculation of braking force/braking torque

$$M_b = z \cdot F_b \cdot \frac{D_{av}}{2}$$

 $F_b = F_c \cdot 2 \cdot \mu$

= Braking force [kN] Fb

= Clamping force [kN] F_{C}

Mb = Braking torque [kNm]

= Number of brakes

z

= Effective diameter of brake [m] Dav

Ondering	KTR-STOP®	M -	- A -	F	B ·	- 40
example:	KTR brake	Size of brake	Active	Floater	Variant	Thickness of brake disk

Calculation of brake disk

D_{C max.} = D_A - 420

 $D_{av} = D_A - 200$

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

EMB-STOP XS-A-xx-F Active floating caliper brakes

Electromechanical brake system

EMB-STOP XS-A-xx-F						
Total weight 1)		Approx. 30 kg	Floating range on axes - away from mounting surface	5 mm		
Width of brake pad		70 mm	Min. diameter of brake disk ØDA	300 mm		
Surface of each brake pad	organic	8,000 mm ²	Operating temperature	-15 °C to +50 °C		
	sinter metal	5,800 mm ²	Closing time	1.8 s		
Max. wear per brake pad		5mm	Release time	1.8 s		
Coefficient of friction of pad, nominal value 2)	μ = 0.4	Size of industrial connector	Han 10B / Han 18EE (male)		
Min. clamping force		6 kN	Motor power	120 W		
Max. clamping force		14 kN	Motor voltage	400 VAC, 50 Hz		
Thickness of brake disk 3)		20 mm, 30 mm	Limit switch signals, standard	Released, braked, wear		
Floating range on axes - towards mounting s	urface	5 mm				

¹⁾ Weight depending on thickness of brake disk.
 ²⁾ The coefficient of friction each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

Calculation of braking force/braking torque

$$F_b = F_c \cdot 2 \cdot \mu$$

$$M_b = z \cdot F_b \cdot \frac{D_{av}}{2}$$

= Braking force [kN] Fb

- = Clamping force [kN] F_{C}
- Mb = Braking torque [kNm]

= Number of brakes z

 D_{av} = Effective diameter of brake [m]

Oudering	EMB-STOP	XS	А	12	F	В	30
example:	EMB brake	Size of brake	Active	Clamping force	Floater	Variant	Thickness of brake disk

Calculation of brake disk

D_{C max.} = D_A - 195

D_{av} = D_A - 86

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

EMB-STOP S-A-xx-F Active floating caliper brakes

Electromechanical brake system

¹⁾ Dimensions and weight depending on thickness of brake disk.

EMB-STOP S-A-xx-F						
Total weight 1)	Approx. 112 kg	Floating range on axes - away from mounting surface	5 mm			
Width of brake pad	120 mm	Min. diameter of brake disk ØDA	500 mm			
Surface of each brake pad organic	26,800 mm ²	Operating temperature	-30 °C to +50 °C			
sinter met	l 26,800 mm ²	Closing time	2.5 s			
Max. wear per brake pad	5mm	Release time	2.5 s			
Coefficient of friction of pad, nominal value 2)	μ = 0.4	Size of industrial connector	Han 10B / Han 18EE (male)			
Min. clamping force	30 kN	Motor power	1.35 kW			
Max. clamping force	65 kN	Motor voltage	400 VAC, 50 Hz			
Thickness of brake disk 3)	30 mm, 40 mm	Limit switch signals, standard	Released, braked, wear			
Floating range on axes - towards mounting surface	5 mm					

¹⁾ Weight depending on thickness of brake disk.
 ²⁾ The coefficient of friction each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

Calculation of braking force/braking torque

$$M_b = z \cdot F_b \cdot \frac{D_{av}}{2}$$

 $F_b = F_c \cdot 2 \cdot \mu$

Fb

 F_{C} = Clamping force [kN]

= Braking torque [kNm] M_{b}

= Number of brakes z

Dav = Effective diameter of brake [m]

Ordening	EMB-STOP	S	Р	50	F	В	30
example:	EMB brake	Size of brake	Passive	Clamping force	Floater	Variant	Thickness of brake disk

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

EMB-STOP L-A-xxx-F Active floating caliper brakes

Electromechanical brake system

EMB-STOP L-A-xxx-F						
Total weight 1)		Approx. 235 kg	Floating range on axes - away from mounting surface	5 mm		
Width of brake pad		100 mm	Min. diameter of brake disk ØDA	900 mm		
Surface of each brake pad	organic	22,400 mm ²	Operating temperature	-30 °C to +50 °C		
	sinter metal	22,400 mm ²	Closing time	3 s		
Max. wear per brake pad		8mm	Release time	3 s		
Coefficient of friction of pad, nominal value	e 2)	μ = 0.4	Size of industrial connector	Han 10B / Han 18EE (male)		
Min. clamping force		125 kN	Motor power	1.5 kW		
Max. clamping force		375 kN	Motor voltage	400 VAC, 50 Hz		
Thickness of brake disk 3)		30 mm, 40 mm, 50 mm	Limit switch signals, standard	Released, braked, wear		
Floating range on axes - towards mountin	g surface	5 mm				

¹⁾ Weight depending on thickness of brake disk.
 ²⁾ The coefficient of friction each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

Calculation of braking force/braking

torque

$$M_b = z \cdot F_b \cdot \frac{D_{av}}{2}$$

 $F_b = F_c \cdot 2 \cdot \mu$

= Braking force [kN]

= Clamping force [kN] F_{C}

Mb = Braking torque [kNm]

= Number of brakes

 F_{b}

z

 D_{av} = Effective diameter of brake [m]

Ordening	EMB-STOP	L	А	375	F	А	30
example:	EMB brake	Size of brake	Active	Clamping force	Floater	Variant	Thickness of brake disk

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP® XS-xx Passive fixed caliper brakes

Hydraulic brake system

KTR-STOP® XS-xx								
Total weight	Approx. 20 kg	Volume with 1 mm stroke - complete brake	2.2 cm ³					
Width of brake pad 70 mm		Max. operating pressure 200 b						
Surface per brake pad organic 8,000 mm ²		Min. thickness of brake disk	20 mm					
sinter	5,800 mm ²	Pressure connection	G 1/8					
Max. wear per brake pad	5 mm	Leakage oil bore	G 1/8					
Rated coefficient of friction ²⁾ $\mu = 0.4$		Min. diameter of brake disk ØDA	300 mm					
Total brake piston surface - complete brake	22 cm ²	Operating temperature	-20 °C to +50 °C					

¹⁾ Dimensions depending on thickness of brake disk.
²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.

0.1.1	KTR-STOP®	XS	6	A	30	65
example:	KTR brake	Size of brake	Clamping force	Variant	Thickness of brake disk	Thickness of stand

Brake types									
Broke tune	Clamping force	Loss of power 3)	Opening pressure	Braking	torque [Nm] with brake disk	Ø [mm]			
Brake type	F _C [kN]	[%]	[bar]	315	560	800			
KTR-STOP® XS-2	2	11.0	30	180	370	570			
KTR-STOP® XS-3	3	5.5	40	270	560	850			
KTR-STOP® XS-4	4	3.0	50	360	750	1140			
KTR-STOP® XS-5	5	8.5	70	450	940	1420			
KTR-STOP® XS-6	6	6.5	80	540	1130	1710			
KTR-STOP® XS-7	7	4.5	90	640	1320	1990			
KTR-STOP® XS-8	8	16.5	120	730	1510	2280			
KTR-STOP® XS-9	9	12.0	130	820	1700	2570			
KTR-STOP® XS-10	10	10.0	140	910	1890	2850			
KTR-STOP® XS-11	11	8.5	150	1000	2080	3140			
KTR-STOP® XS-12	12	11.0	160	1090	2270	3420			
KTR-STOP® XS-13	13	9.5	170	1190	2460	3710			
KTR-STOP® XS-14	14	8.5	180	1280	2650	3990			
KTR-STOP® XS-15	15	8.0	190	1370	2840	4280			

³⁾ With a stroke of 1 mm (1 mm wear of brake pad)

Calculation of brake disk

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP[®] S-xx Passive fixed caliper brakes

Hydraulic brake system

KTR-STOP® S-xx								
Total weight 10 - 55 kN	Approx. 95 kg	Volume with 1 mm stroke - complete brake	13.8 cm ³					
Total weight 60 - 80 kN	Approx. 100 kg	Max. operating pressure	200 bars					
Width of brake pad	125 mm	Min. thickness of brake disk	20 mm					
Surface per brake pad organic	28,700 mm ²	Pressure connection	G 1/4					
sinter	26,800 mm ²	Leakage oil bore	G 1/8					
Max. wear per brake pad 6 mm		Min. diameter of brake disk ØDA	500 mm					
Rated coefficient of friction 2)	μ = 0.4	Operating temperature	-20 °C to +50 °C					
Total brake piston surface - complete brake	138 cm ²							

¹⁾ Dimensions depending on thickness of brake disk.
²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.

Ordenian	KTR-STOP®	S	40	В	- 30 ·	- 50
example:	KTR brake	Size of brake	Clamping force	Variant	Thickness of brake disk	Thickness of stand

Brake types										
Ducks ture 3)	Clamping force	Loss of power 3)	Opening pressure	Braking	torque [Nm] with brake dis	kØ[mm]				
Brake type	F _C [kN]	[%]	[bar]	500	710	1000				
KTR-STOP® S-10	10	4.5	20	1400	2300	3400				
KTR-STOP® S-15	15	2	30	2200	3400	5200				
KTR-STOP® S-20	20	4.5	40	2900	4600	6900				
KTR-STOP® S-25	25	5.0	50	3700	5800	8700				
KTR-STOP® S-30	30	3.5	60	4400	6900	10400				
KTR-STOP® S-35	35	8.0	80	5100	8100	12100				
KTR-STOP® S-40	40	6.5	90	5900	9200	13900				
KTR-STOP® S-45	45	6.0	100	6600	10400	15600				
KTR-STOP® S-50	50	5.5	100	7400	11600	17400				
KTR-STOP® S-55	55	5.0	110	8100	12700	19100				
KTR-STOP® S-60	60	7.0	130	8800	13900	20800				
KTR-STOP® S-65	65	6.0	140	9600	15000	22600				
KTR-STOP® S-70	70	5.0	150	10300	16200	24300				
KTR-STOP® S-75	75	4.5	160	11100	17400	26100				
KTR-STOP [®] S-80	80	5.0	170	11800	18500	27800				

³⁾ With a stroke of 1 mm (1 mm wear of brake pad)

-A

// 0,1 B

0,05

Calculation of brake disk

up to $ØD_A = 1500 \text{ mm}$

 $D_{C max.} = D_{A} - 300$

from $ØD_A = 1500 \text{ mm}$

$$\mathsf{D}_{\mathsf{av}} = \mathsf{D}_{\mathsf{A}} - 120$$

Connection dimensions of brake

Optional

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

φD_C

2 A

KTR-STOP[®] M-xxx Passive fixed caliper brakes

Hydraulic brake system

KTR-STOP [®] M-xxx								
Total weight ≤ 120 kN	Approx. 200 kg	Volume with 1 mm stroke - complete brake	27.48 cm ³					
Total weight 125 - 180 kN	Approx. 215 kg	Max. operating pressure 200 bars						
Width of brake pad	200 mm	Min. thickness of brake disk	30 mm					
Surface per brake pad organic	57,900 mm ²	Pressure connection	G 1/4					
sinter	53,500 mm ²	Leakage oil bore	G 1/8					
Max. wear per brake pad	10 mm	Min. diameter of brake disk ØDA	800 mm					
Rated coefficient of friction ²) $\mu = 0.4$		Operating temperature	-20 °C to +50 °C					
Total brake piston surface - complete brake	274.8 cm ²							

¹⁾ Dimensions depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.

Oudening	KTR-STOP®	М -	- 100	В -	- 40 ·	- 66
example:	KTR brake	Size of brake	Clamping force	Variant	Thickness of brake disk	Thickness of stand

Brake types										
Ducks two s	Clamping force	Loss of power 3)	Opening pressure	Braking	torque [Nm] with brake disk	Ø [mm]				
Блаке туре	F _C [kN]	[%]	[bar]	800	1500	2000				
KTR-STOP® M-60	60	6.5	60	14400	31200	43200				
KTR-STOP® M-70	70	5.0	70	16800	36400	50400				
KTR-STOP® M-80	80	4.0	80	19200	41600	57600				
KTR-STOP® M-90	90	8.5	100	21600	46800	64800				
KTR-STOP® M-100	100	7.0	110	24000	52000	72000				
KTR-STOP® M-110	110	6.5	120	26400	57200	79200				
KTR-STOP® M-120	120	8.5	130	28800	62400	86400				
KTR-STOP® M-130	130	5.0	140	31200	67600	93600				
KTR-STOP® M-140	140	4.5	150	33600	72800	100800				
KTR-STOP® M-150	150	7.5	165	36000	78000	108000				
KTR-STOP® M-160	160	7.0	180	38400	83200	115200				
KTR-STOP® M-170	170	6.5	190	40800	88400	122400				
KTR-STOP® M-180	180	6.0	190	43200	93600	129600				

³⁾ With a stroke of 1 mm (1 mm wear of brake pad)

Calculation of brake disk

$$D_{C \text{ max.}} = D_{A} - 420$$

 $D_{av} = D_{A} - 200$

Connection dimensions of brake

- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

R, 10

KTR-STOP[®] L light-xxx Passive fixed caliper brakes

Hydraulic brake system

KTR-STOP [®] L light-xxx								
Total weight	Approx. 312 kg	Max. operating pressure	200 bars					
Width of brake pad	324 mm	Min. thickness of brake disk	30 mm					
Surface of each brake pad	65,600 mm ²	Pressure connection	G 3/8					
Max. wear per brake pad	10 mm	Leakage oil bore	G 1/4					
Rated coefficient of friction 2)	μ = 0.4	Min. diameter of brake disk ØDA	1000 mm					
Total brake piston surface - complete brake	279.2 cm ²	Operating temperature	-20 °C to +50 °C					
Volume with 1 mm stroke - complete brake	27.92 cm ³							

¹⁾ Dimensions depending on thickness of brake disk.
²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.

0.1.1	KTR-STOP®	L light	200	A	30 ·	- 60
example:	KTR brake	Size of brake	Clamping force	Variant	Thickness of brake disk	Thickness of stand

Brake types										
Broke tures	Clamping force Loss of power 4)		Opening pressure	Braking	Braking torque [Nm] with brake disk Ø [mm]					
Бгаке туре	F _C [kN]	[%]	[bar]	1000	2000	3000				
KTR-STOP® L light-100	100	4.0	95	30800	70800	110800				
KTR-STOP® L light-120	120	3.5	105	36900	84900	132900				
KTR-STOP® L light-140	140	8.5	130	43100	99100	155100				
KTR-STOP® L light-160	160	8.0	170	49200	113200	177200				
KTR-STOP® L light-180	180	8.0	175	55400	127400	199400				
KTR-STOP® L light-200	200	7.5	185	61600	141600	221600				
KTR-STOP® L light-220	220	6.5	200	67700	155700	243700				

⁴⁾ With a stroke of 1 mm (1 mm wear of brake pad)

Calculation of brake disk

$$D_{av} = D_A - 220$$

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP[®] L-xxx Passive fixed caliper brakes

Hydraulic brake system

KTR-STOP [®] L-xxx					
Total weight	Approx. 455 kg	Max. operating pressure	200 bars		
Width of brake pad	240 mm	Min. thickness of brake disk	30 mm		
Surface of each brake pad (organic)	73,100 mm ²	Pressure connection	G 3/8		
Max. wear per brake pad	6 mm	Leakage oil bore	G 1/4		
Rated coefficient of friction 2)	μ = 0.4	Min. diameter of brake disk ØDA	1000 mm		
Total brake piston surface - complete brake	452 cm ²	Operating temperature	-20 °C to +50 °C		
Volume with 1 mm stroke - complete brake	45.2 cm ³				

¹⁾ Dimensions depending on thickness of brake disk.
²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.

Ondersing	KTR-STOP®	L	200	A	50 ·	- 80
example:	KTR brake	Size of brake	Clamping force	Variant	Thickness of brake disk	Thickness of stand

Brake types						
Broke turne	Clamping force Loss of power 3)		Opening pressure	Braking torque [Nm] with brake disk Ø [mm]		
Brake type Fc [kN] [%]	[%]	[bar]	1000	2000	3000	
KTR-STOP® L 200	200	4.5	120	61000	141000	221000
KTR-STOP [®] L 250	250	7.5	160	77000	177000	277000
KTR-STOP® L 300	300	6.0	180	92000	212000	332000

³⁾ With a stroke of 1 mm (1 mm wear of brake pad)

Calculation of brake disk

 $D_{av} = D_A - 230$

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP[®] XL-XXX Passive fixed caliper brakes

Hydraulic brake system

KTR-STOP® XL-xxx					
Total weight	Approx. 823 kg	Max. operating pressure	200 bars		
Width of brake pad	290 mm	Min. thickness of brake disk	40 mm		
Surface of each brake pad (organic)	126300 mm ²	Pressure connection	G 3/4		
Max. wear per brake pad	10 mm	Leakage oil bore	G 1/4		
Rated coefficient of friction 2)	μ = 0.4	Min. diameter of brake disk ØDA	1500 mm		
Total brake piston surface - complete brake	848 cm ²	Operating temperature	-20 °C to +50 °C		
Volume with 1 mm stroke - complete brake	84.8 cm ³				

¹⁾ Dimensions depending on thickness of brake disk.
²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.

Oudering	KTR-STOP [®]	XL	250	В	40 ·	- 80
example:	KTR brake	Size of brake	Clamping force	Variant	Thickness of brake disk	Thickness of stand

Brake types								
Ducks to a	Clamping force	Loss of power 3)	Opening pressure	Braking	torque [Nm] with brake dis	k Ø [mm]		
Вгаке туре	Brake type F _C [kN]	[%]	[bar]	1500	2500	3500		
KTR-STOP® XL-250	250	6.2	80	117000	217000	317000		
KTR-STOP® XL-300	300	6.5	90	140400	260400	380400		
KTR-STOP® XL-350	350	7.0	110	163800	303800	443800		
KTR-STOP® XL-400	400	6.1	120	187200	347200	507200		
KTR-STOP® XL-450	450	6.4	140	210600	390600	570600		
KTR-STOP® XL-500	500	5.5	160	234000	434000	634000		

³⁾ With a stroke of 1 mm (1 mm wear of brake pad)

Calculation of brake disk

$$D_{C \text{ max.}} = D_{A} - 670$$

 $D_{av} = D_A - 330$

Connection dimensions of brake

$$F_{b} = F_{c} \cdot 2 \cdot \mu$$
$$M_{b} = z \cdot F_{b} \cdot \frac{D_{av}}{2}$$

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP[®] M-D Active fixed caliper brakes

Hydraulic brake system

KTR-STOP [®] M-D					
Total weight	Approx. 72.5 kg 1)	Max. clamping force	203 kN		
Width of brake pad	110 mm	Max. operating pressure	160 bars		
Surface per brake pad organic	26,000 mm ²	Thickness of brake disk 3)	30 mm, 40 mm		
Max. wear per brake pad	6 mm (material: organic)	Pressure connection	G 1/4		
Rated coefficient of friction 2)	μ = 0.4	Leakage oil bore	G 1/4		
Total brake piston surface - complete brake	254 cm ²	Min. diameter of brake disk ØDA	800 mm		
Volume with 1 mm stroke - complete brake	25.4 cm ³	Operating temperature	-20 °C to +50 °C		

¹⁾ Dimensions and weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ⁹⁾ Other thickness of brake disk available on request.

Braking torque [Nm] with brake disk Ø [mm]					
Brake disk Ø [mm] 800 1500 2000					
Braking torque [Nm]	56500	113300	153900		

Calculation of braking force/braking torque

$$F_{b} = F_{c} \cdot 2 \cdot \mu$$
$$M_{b} = z \cdot F_{b} \cdot \frac{D_{av}}{2}$$

= Braking force [kN] Fb

- F_{c} = Clamping force [kN]
- Mb = Braking torque [kNm]

= Number of brakes z

Dav = Effective diameter of brake [m]

Ordering example:	KTR-STOP [®]	M-D	В	- 30
	KTR brake	Size of brake	Variant	Thickness of brake disk

Calculation of brake disk

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP[®] L light-A Active fixed caliper brakes

Hydraulic brake system

Pressure connection G 3/8

KTR-STOP® L light-A					
Total weight	Approx. 270 kg	Max. clamping force	230 kN		
Width of brake pad	324 mm	Max. operating pressure	150 bars		
Surface of each brake pad	65,600 mm2	Min. thickness of brake disk	30 mm		
Max. wear per brake pad	10 mm	Pressure connection	G 3/8		
Rated coefficient of friction 2)	μ = 0.4	Leakage oil bore	G 1/4		
Total brake piston surface - complete brake	308 cm ²	Min. diameter of brake disk ØDA	1000 mm		
Volume with 1 mm stroke - complete brake	30.8 cm ³	Operating temperature	-20 °C to +50 °C		

¹⁾ Dimensions depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.

Braking torque [Nm] with brake disk Ø [mm]					
Brake disk Ø [mm]	1000	2000	3000		
Braking torque [Nm]	71760	163760	255760		

Outering	KTR-STOP [®]	L light-A	А	30 -	- 60
example:	KTR brake	Size of brake	Variant	Thickness of brake disk	Thickness of stand

Calculation of brake disk

 $D_{av} = D_A - 220$

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP® YAW XS Yaw brakes

Hydraulic brake system

Pressure connection G 1/4

Leakage oil bore G 1/4

Eye bolt M8

KTR-STOP® YAW XS					
Total weight	Approx. 42 kg 1)	Max. clamping force	71 kN		
Width of brake pad	86 mm	Max. operating pressure	160 bars		
Surface of each brake pad	9500 mm ²	Thickness of brake disk 3)	20 mm		
Max. wear per brake pad	6 mm (material: organic)	Pressure connection	G 1/4		
Rated coefficient of friction 2)	μ = 0.35 - 0.4	Leakage oil bore	G 1/4		
Total brake piston surface - complete brake	88 cm ²	Min. diameter of brake disk ØDA	500 mm		
Volume with 1 mm stroke - complete brake	8.8 cm ³	Operating temperature	-30 °C to +50 °C		

¹⁾ Dimensions depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

Ordenian	KTR-STOP®	YAW XS	В	20
example:	KTR brake	Size of brake	Variant	Thickness of brake disk

Calculation of brake disk

$$D_{av} = D_A - 114$$

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP® YAW S Yaw brakes

Hydraulic brake system

Leakage oil bore G 1/8

KTR-STOP® YAW S					
Total weight	Approx. 29.5 kg ¹⁾	Max. clamping force	106 kN		
Width of brake pad	70 mm	Max. operating pressure (up to $\mu = 0.4$)	160 bars		
Surface of each brake pad	10,400 mm ²	Thickness of brake disk 3)	20 mm		
Max. wear per brake pad 6 mm (material: organic) <u>External assembly of brake</u>		100			
Rated coefficient of friction 2)	μ = 0.4	Min. diameter of brake disk ØDA	400 mm		
Total brake piston surface - complete brake	133 cm ²	Internal assembly of brake	700		
Volume with 1 mm stroke - complete brake	13.3 cm ³	Min. diameter of brake disk ØDi	700 mm		
Pressure connection	G 1/8	Operating temperature	-20 °C to +50 °C		
Leakage oil bore	G 1/8				

¹⁾ Dimensions and weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.
 ⁴⁾ Other positions of pressure connections available.

Calculation of braking force/braking torque

 $F_b = F_c \cdot 2 \cdot \mu$ $M_{b} = z \cdot F_{b} \cdot \frac{D_{av}}{2}$ F_{b} = Braking force [kN]

- F_{c} = Clamping force [kN]
- Mb = Braking torque [kNm]

= Number of brakes z

Dav = Effective diameter of brake [m]

	KTR-STOP®	YAW S	В	- 20
example:	KTR brake	Size of brake	Variant	Thickness of brake disk

Connection dimensions of brake

D_{A min.} = D_i + 170

Optional

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

D_{i max.} = D_A - 175

KTR-STOP® YAW M Yaw brakes

Hydraulic brake system

KTR-STOP® YAW M				
Total weight	Approx. 63 kg 1)	Approx. 63 kg ¹⁾ Max. clamping force		
Width of brake pad	108 mm	Max. operating pressure (up to $\mu = 0.4$)	160 bars	
Surface of each brake pad	20,300 mm ²	Thickness of brake disk 3)	30 mm	
Max. wear per brake pad	brake pad 7 mm (material: organic) <u>External assembly of brake</u>		500 mm	
Rated coefficient of friction 2)	μ = 0.4	Min. diameter of brake disk ØDA	500 mm	
Total brake piston surface - complete brake 254 cm ² Internal assembly of brake		000 mm		
Volume with 1 mm stroke - complete brake	25.4 cm ³	Min. diameter of brake disk ØDi	900 1111	
Pressure connection	G 1/4	Operating temperature	-20 °C to +50 °C	
Leakage oil bore	G 1/4			

¹⁾ Dimensions and weight depending on thickness of brake disk.

⁹ Other thickness of brake disk available on request.

Calculation of braking force/braking torque

$$F_{b} = F_{c} \cdot 2 \cdot \mu$$
$$M_{b} = z \cdot F_{b} \cdot \frac{D_{av}}{2}$$

 F_{b} = Braking force [kN]

- F_{c} = Clamping force [kN]
- Mb = Braking torque [kNm]

= Number of brakes z

Dav = Effective diameter of brake [m]

0 1 1	KTR-STOP®	YAW M	В	- 30
example:	KTR brake	Size of brake	Variant	Thickness of brake disk

Calculation of brake disk

Calculation of brake disk

Connection dimensions of brake

Optional

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

′ R _z 25 A 0,05 M27 M10 ϕD_{av} 0,1 // 0,2 A // 0,1 B 0 Å R Z 10 30<u>±0,2</u> 88 ±1,0

For continuously updated data refer to our online catalogue at www.ktr.com

KTR-STOP® YAW L Yaw brakes

Hydraulic brake system

KTR-STOP® YAW L					
Total weight	Approx. 176 kg 1)	Max. clamping force	542 kN		
Width of brake pad	138 mm	Max. operating pressure (up to $\mu = 0.4$)	160 bars		
Surface of each brake pad	58,000 mm ²	Thickness of brake disk 3)	40 mm		
Max. wear per brake pad	7 mm (material: organic)	(material: organic) External assembly of brake			
Rated coefficient of friction 2)	μ = 0.4	Min. diameter of brake disk ØDA	2000 mm		
Total brake piston surface - complete brake	678 cm ²	Internal assembly of brake	0500		
Volume with 1 mm stroke - complete brake	67.8 cm ³	Min. diameter of brake disk ØDi	2500 mm		
Pressure connection	G 1/4	Operating temperature	-20 °C to +50 °C		
Leakage oil bore	G 1/4				

¹⁾ Dimensions and weight depending on thickness of brake disk.
 ²⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.
 ³⁾ Other thickness of brake disk available on request.

Calculation of braking force/braking torque

$$F_{b} = F_{c} \cdot 2 \cdot \mu$$
$$M_{b} = z \cdot F_{b} \cdot \frac{D_{av}}{2}$$

 F_{b} = Braking force [kN]

- F_{c} = Clamping force [kN]
- Mb = Braking torque [kNm]

= Number of brakes z

Dav = Effective diameter of brake [m]

.	KTR-STOP [®]	YAW L	A	- 40
Ordering example:	KTR brake	Size of brake	Variant	Thickness of brake disk

Connection dimensions of brake

- Various colours available
- Sensor indicating wear and condition of pad
- Temperature sensor
- Alternative materials of brake pad

KTR-STOP[®] TB S Disk brakes

Electrohydraulic brake system

The illustration shows the brake as a right-hand version R; the left-hand version is structured laterally reversed

Oudering	KTR-STOP® TB	S1	Ed 500/60	R
example:	KTR brake	Size	Thruster	Туре
Product features

- Disk brakes available as a right-hand and left-hand version
- Disk brakes in accordance with the industry standard
- The fully enclosed spiral element improves protection against damage and dirt
- Adjustable braking torque

Optional

- Automatic wear adjustment
- Manual thruster
- Limit switch brake condition and wear of pad
- Decelerated damping
- Alternative pad materials
- Relubricated bearing points
- Special painting
- Other options available: please consult with KTR.

Applications

- Cranes/hoists
- Conveyors
- Steel mills
- Materials handling

								S	ize S1									
Thursday									Dimensi	ons [mm]								
Inruster	A _{max}	A1 _{max}	A2 _{max}	A3	B _{max}	B3	B4	B5 _{max}	Cmax	C3	D3	Н	1	12	K2	М	N	Q
Ed 230/50	470		275		325					255								
Ed 300/50	470	105	275	140	325	055	00	220	600	255	10	020		100	100	200	100	15
Ed 500/60	500	190	305	140	345	200	20	330	690	260	10	230	80	160	120	300	100	15
Ed 800/60	500		305		345					260								
				Brake d	isk					I	Brake pa	d	We	ight	Max. bra	king torqu	e in Nm, μ	= 0.4 1)
Size					Dime	nsions (mr	n]					AB	[ke	.1 2)	Ed	Ed	Ed	Ed
Size	D2		B1	D1	[D4 _{max}	E		K1	B2		[cm ²]	Įĸg	11 ->	230/50	300/50	500/60	800/60
S1	315		30	237		120	118		58	76		105	6	0	360	460	890	1420
S1	355		30	277		160	138		78	76		105	6	0	420	535	1040	1660
S1	400		30	322		205	160		100	76		105	6	0	490	625	1210	1930
S1	450		30	372		255	185		125	76		105	6	0	565	720	1400	2225
S1	500		30	422		305	210		150	76		105	6	0	645	815	1585	2525
S1	560		30	482		365	240		180	76		105	6	0	735	935	1815	2885
S1	630		30	552		435	275		215	76		105	6	0	840	1070	2075	3305

								5	Size S2									
Thrustor									Dimens	ions [mm]								
Thruster	A _{max}	A _{1max}	A _{2max}	A ₃	B _{max}	B ₃	B ₄	B _{5max}	C _{max}	C ₃	D3	Н	11	I2	K ₂	M	N	Q
Ed 500/60																		
Ed 800/60	615	055	260	175	205	200		200	800	240	00	000	120	120	140	200	150	10
Ed 1250/60	015	200	300	175	360	300	20	390	090	340	22	200	130	130	140	300	150	10
Ed 2000/60																		
				Brake d	isk						Brake p	oad	We	ight	Max. bra	aking torqu	ue in Nm, j	$\mu = 0.4^{-11}$
Size					Dime	nsions [mr	n]					AB	[ke	-1 2)	Ed	Ed	Ed	Ed
Size	D ₂		B ₁	D1		D4max	E		K ₁	B ₂		[cm ²]	Įĸg	11 ->	500/60	800/60	1250/60	2000/60
S2	450		30	359		196	173		105	100		193	10	30	1200	1985	3005	4465
S2	500		30	409		246	198		130	100		193	13	30	1370	2260	3425	5090
S2	560		30	469		306	228		160	100		193	13	30	1570	2595	3925	5835
S2	630		30	539		376	263		195	100		193	13	30	1805	2980	4510	6705
S2	710		30	619		456	303		235	100		193	13	30	2075	3425	5180	7700
S2	800		30	709		546	348		280	100		193	13	30	2375	3925	5935	8820

								5	Size S3									
Thrustor									Dimensi	ons [mm]								
Thruster	A _{max}	A _{1max}	A _{2max}	A ₃	B _{max}	B ₃	B ₄	B _{5max}	C _{max}	C ₃	D3	н	4	I2	K ₂	M	N	Q
Ed 1250/60																		
Ed 2000/60	600	005	225	040	470	270	20	470	1110	105	07	270	100	100	160	450	0.05	00
Ed 3000/60	620	200	330	240	470	370	30	470	1110	495	21	370	100	160	100	430	225	22
Ed 3000/120																		
				Brake d	lisk						Brake pa	d	We	ight	Max. bra	ıking torqu	ie in Nm, µ	$\mu = 0.4^{-1}$
Size					Dime	nsions (mr	n]					AB	[ke	.1 2)	Ed	Ed	Ed	Ed
3120	D ₂		B ₁	D1	[D _{4max}	E		K1	B ₂		[cm ²]	[KG	11	1250/60	2000/60	3000/60	3000/120
S3	630		30	520		305	245		163	135		346	20	65	4125	6010	10230	11655
S3	710		30	600		385	285		203	135		346	20	65	4755	6935	11805	13450
S3	800		30	690		475	330		248	135		346	20	65	5470	7975	13575	15465
S3	900		30	790		575	380		298	135		346	20	65	6265	9130	15545	17710
S3	1000)	30	890		675	441		355	125		309	20	65	7055	10290	17515	19950
S3	1250)	30	1140)	925	566		480	125		309	20	65	9040	13180	22435	25555

¹⁾ Air gap per side approx. 1.25 mm for size S1 and approx. 1.5 mm for size S2 and S3. The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR.

2) Without thruster

KTR-STOP® TB T Drum brakes

Electrohydraulic brake system

|--|

Oudering	KTR-STOP® TB	T315	Ed 500/60
example:	KTR brake	Size	Thruster

Product features

- Type of drum brakes acc. to DIN 15435
- The fully enclosed spiral element improves protection against damage and dirt
- Adjustable braking torque

Optional

- Automatic wear adjustment
- Manual thruster
- Limit switch brake condition and wear of pad
- Decelerated damping
- Alternative pad materials
- Relubricated bearing points
- Special painting
- Other options available: please consult with KTR.

Applications

- Cranes/hoists
- Conveyors
- Steel mills
- Materials handling

							Dr	um bra	ake									
DT	Thruster	Braking torque 1)							Dim	ensions [mm]							m 2)
[mm]	acc. to DIN 15430	Nm for $\mu = 0.4$	в	b1	b2	d	н	h1	h2	L	l ₁	I ₃	i	k	m	n	t	[kg]
200	Ed 230/50	50 - 300	160	75	80	14	475	155	5	660	180	165	55	145	80	85	117	26
200	Ed 300/50	50 - 420	100	/0	00	14	475	100		000	100	100		140	00	00		20
	Ed 230/50	50 - 300	160							730								1
250	Ed 300/50	50 - 425	100	95	100	18	570	185	5	/00	210	195	65	180	100	95	135	35
	Ed 500/60	80 - 800	195							770								Ĺ
	Ed 230/50	80 - 375	160							875								54
315	Ed 300/50	80 - 525		118	110	18	650	225	5		265	235	80	220	110	125	166	
010	Ed 500/60	120 - 940	195		110	10	000	220		910	200	200		220	110	120	100	55
	Ed 800/60	120 - 1610	100							010								00
	Ed 230/50	120 - 375	160							975								68
	Ed 300/50	120 - 525					670				315							
400	Ed 500/60	200 - 940	195	150	140	22		270	10	1005		295	100	270	140	155	200	70
	Ed 800/60	200 - 1610		-														L
	Ed 1250/60	200 - 2580	240				780			1090	345							95
	Ed 2000/60	200 - 4000																L
	Ed 500/60	250 - 1250	195															
	Ed 800/60	250 - 2080																
500	Ed 1250/60	250 - 3200		190	180	22	880	330	10	1195	395	350	130	325	180	170	245	130
	Ed 2000/60	250 - 5000	240															
	Ed 3000/60	250 - 7300																
	Ed 1250/60	350 - 3200	-															
630	Ed 2000/60	350 - 5000	240	236	220	27	960	410	10	1350	475	450	170	400	220	230	300	195
	Ed 3000/60	350 - 7600																L
	Ed 1250/60	450 - 3600																
710	Ed 2000/60	450 - 5600	240	265	240	27	1120	460	10	1500	540	500	190	450	240	260	345	240
	Ed 3000/60	450 - 8600									1.10						10	
	Ed 3000/120	1000 - 10000																

¹⁾ The friction coefficient each depends on the application resp. material of the brake pad; please consult with KTR. ²⁾ Without thruster

For technical data of KTR-STOP® TB thruster see page 48/49.

KTR-STOP[®] TB THRUSTER according to DIN 15430

Electrohydraulic thrusters

Description of product:

Electrohydraulic thrusters are compact systems closed on the outside that mainly consist of an electric motor and a hydraulic unit. When switched on the electric motor in the lower section of the housing is driving the pump wheel of the hydraulic pump on top. The generated hydrodynamic pressure takes effect on a piston extending the piston rod to the end-of-stroke position When switching off the current or in the event of power failure the pump stops pumping, the oil pressure drops quickly and the piston rod returns into its original position.

To make sure that the piston returns particularly fast, it is possible to either install a return spring (similar to a brake spring) in the housing of the thruster, load the piston rod with an external force or install a quick lowering switch.

The hydraulic section with the tank is located in a closed housing. The oil level can be externally inspected and filled up through the oil filler hole. Electrohydraulic thrusters are supplied ready for assembly and painted and are provided with oil filling. They have to be fastened via pins in the bores of the base fork and in the piston rod head.

The piston stroke is either defined by a limitation in the device's housing or by an external attachment on the assembly.

Features of thrusters

- Thrusters depending on size from 230 N to 4500 N
- Piston strokes from 50 mm to 120 mm with serial devices, longer strokes up to 155 mm in a special version
- Solid design, therefore specifically suitable for highly stressed and harsh operating conditions
- Any motor rotation direction, since the vane type pump pumps in any rotating direction
- Normally all thrusters can be loaded up to 2000 switches per hour
- For continuous switching 100 % ED (mode of operation S1 VDE 0530)
- Resistant to voltage fluctuations
- All devices are provided with a bipolar rotary current cage motor, protection class IP66 and insulation class F according to VDE 0530, limit temperature of motor 150 °C
- Piston stroke and lowering time adjustable by installation of a globe respectively lowering valve
- Standard design for rotary current 400V, 50 Hz- resp. for 500V, 50 Hz. All other rotary current voltages and frequencies are available. Motor terminal boxes are equipped with waterproof cable gland M25x1.5
- Additional return springs respectively brake springs can be installed in all devices
- Suitable with standard oil filling for ambient temperatures from -25 °C to +50 °C; with special oils and heating for temperatures down to -40 °C
- Up to ambient temperatures of 50 °C all thrusters are approved for 100 % ED (mode of operation S1 VDE 0530)
- All devices suitable for standard brake control (e. g. reducing the hoist motor speed to approx. 20 % of the rated speed). In this case additional damping springs are required
- Every device can be mounted vertically, diagonally or horizontally and is almost maintenance-free
- If requested, all thrusters can be supplied with limit switches mounted

Extra equipment:

- Limit switch (mechanical or inductive)
- Lowering and globe valve for infinitely variable extension of lifting and lowering times
- Quick switch in case if standard lowering time of the piston is too long
- Brake spring (spring type c) for generating the braking force
- Damping spring (spring type d) for damping the aperiodic stabilising of the brake (only effective in combination with a spring type c)
- Heating for use with temperatures mainly below -25 °C

KTR-STOP® TB THRUSTER according to DIN 15430

Electrohydraulic thrusters

	KTR-STOP® TB thruster													
Size		Dimensions [mm]												
3120	s	b1	b2	b3	b4	b5	b6	d1 2)	d2 1)	h1	h2	h3	h4	h5
Ed 230/50	50	40	80	20	160	80	200	16	16	286	20	16	26	12
Ed 300/50	50	40	80	25	160	80	197	16	16	370	18	16	34	15
Ed 500/60	60	60	120	30	195	97	254	20	20	435	23	22	36	18
Ed 800/60	60	60	120	30	195	97	254	20	20	450	23	22	36	18

¹⁾ Tolerance: +0.1 ²⁾ Tolerance: +0.15/+0.25

			Techni	ical data			
Size	Power [N]	Stroke [mm]	Rated frequency [Hz]	Rated voltage [V]	Rated current [A]	Rated power [W]	Weight [kg]
Ed 230/50	230	50	50	230/400	0.9/0.6	165	10
Ed 300/50	300	50	50	230/400	1.0/0.7	200	14
Ed 500/60	500	60	50	230/400	1.0/0.7	210	23
Ed 800/60	800	60	50	230/400	2.1/1.2	330	24

Outering	KTR-STOP® TB	Ed 800/60
example:	KTR thruster	Size

	KTR-STOP® TB thruster														
Size							Dir	nensions [n	nm]						
Size	s	b1	b2	b3	b4	b5	b6	d1 2)	d2 1)	h1	h2	h3	h4	h5	h6
Ed 1250/60	60	40	90	40	240	112	260	25	25	645	35	25	117	25	38
Ed 1250/120	120	40	90	40	240	112	260	25	25	705	35	25	177	25	38
Ed 2000/60	60	40	90	40	240	112	260	25	25	645	35	25	117	25	38
Ed 2000/120	120	40	90	40	240	112	260	25	25	705	35	25	177	25	38
Ed 3000/60	60	40	90	40	240	112	260	25	25	645	35	25	117	25	38
Ed 3000/120	120	40	90	40	240	112	260	25	25	705	35	25	177	25	38
Ed 4000/60	60	40	90	40	240	112	260	25	25	645	35	25	117	25	38
Ed 4000/120	120	40	90	40	240	112	260	25	25	705	35	25	177	25	38
Ed 4500/60	60	40	90	40	240	112	260	25	25	645	35	25	117	25	38
Ed 4500/120	120	40	90	40	240	112	260	25	25	705	35	25	177	25	38

¹⁾ Tolerance: +0.1 ²⁾ Tolerance: +0.15/+0.25

			Techni	cal data			
Size	Power [N]	Stroke [mm]	Rated frequency [Hz]	Rated voltag	e [V] Rated current [A]	Rated power [W]	Weight [kg]
Ed 1250/60	1250	60	50	230/400	2.1/1.2	330	39
Ed 1250/120	1250	120	50	230/400	2.1/1.2	330	39
Ed 2000/60	2000	60	50	230/400	2.2/1.3	450	39
Ed 2000/120	2000	120	50	230/400	2.2/1.3	450	39
Ed 3000/60	3000	60	50	230/400	2.4/1.4	550	40
Ed 3000/120	3000	120	50	230/400	2.4/1.4	550	40
Ed 4000/60	4000	60	50	230/400	2.6/1.5	650	40
Ed 4000/120	4000	120	50	230/400	2.6/1.5	650	40
Ed 4500/60	4500	60	50	230/400	2.6/1.7	650	40
Ed 4500/120	4500	120	50	230/400	2.6/1.7	650	40
					r		

Outlanding	KIR-SIOP® IB	Ed 3000/120
example:	KTR thruster	Size

STOP-BLOCK-TURN-SYSTEM

SBT Systems

Stop-block-turn systems for ship propulsion from small to large: driving power of up to 25 MW and beyond

Description of product

The SBT systems of KTR are mainly used on propeller shafts in marine applications: ranging from small yachts through cruise liners to large supply vessels. The functions »stop«, »block« and »turn« of the propeller shaft can optionally be implemented individually or in any combination.

Our broad system construction kit provides high flexibility resulting in a tailor-made overall solution for the drive train.

The brakes, locking pins and turn devices can be combined as required. Here the individual functions can be driven both electrically, hydraulically or purely mechanically. Particularly the all electric version is a quiet and environmentally friendly alternative for state-of-the-art electrical ship propulsion. We provide you with an overall solution of the specified components including control unit, hydraulic power pack, brake disk, etc.

Properties

- Turning torques up to 500 kNm
- Blocking torques up to 1000 kNm
- Braking torques up to 900 kNm
- Back-up limit switch for condition monitoring
- Supply voltages adaptable for drives or HPU
- Mechanical manual emergency operation of components
- High-quality corrosion protection of all components

Control (optional)

The control unit is selected pursuant to its function and complies with the high standards of classification societies. The system with hydraulic brakes allows to optionally include the hydraulic power pack in the control cabinet. We are familiar with noise reduction elements for low-noise applications or rope damping elements for applications subject to shock load. The components of an SBT system are logically linked within a control unit to ensure safe and failure-free operation of the different functions. This applies both with local control and remote control from the wheelhouse.

For current data refer to our online catalogue at www.ktr.com

EMB-STOP Control Box Electronic control system

Description of product

The EMB-STOP Control Box can be used for active and passive electromechanical brakes type EMB-STOP. It forms a simplifying interface between the customer's control and the brake EMB-STOP.

- Simple interface between control and brake \rightarrow Plug & Play
- Available for active and passive EMB-STOP brakes
- Optionally available with handheld panel → Releasing and applying a brake directly at the source
- Signal control for customised controls
- Control voltage: 24 VDC
- Motor voltage: up to 520 VAC with 50 Hz/60 Hz
- Relays for potential-free status signals of a brake: brake applied, brake released, wear of brake pad

IntelliRamp[®] Electronic control system

Description of product

IntelliRamp[®] is an electronic control system allowing for accurate braking processes via program control. In conjunction with IntelliRamp[®] our brakes are therefore suitable for use in sophisticated applications:

- Ramp-supported braking process
 - O Continuous deceleration operation
 - O Continuous time operation
 - O Continuous speed operation
- Overspeed monitoring
- Reverse lock
- Joystick control
- Online remote function

Operation and structure

The IntelliRamp[®] system controls the clamping force of the brake and the resulting braking force infinitely. This allows to control both hydraulic and electromechanical brakes sensitively complying with the operating instructions. The core of the system is the control computer with its touchscreeen. It takes over all functions of calculation and monitoring that are necessary for controlling the brake systems. In addition IntelliRamp[®] controls and monitors the function of the power pack with a hydraulic brake system, too. For that purpose parameters like oil level, oil temperature and hydraulic pressure are recorded by the system. The overall system, among other things, has an uninterruptible power supply to allow for performing a full braking ramp in case of power failure. This will allow you to keep the full control of your brake system even with critical conditions of the machine while preventing damages from your machine.

Operation

The control system is operated via touchscreen with menu navigation. Other relays are not necessary which increases the availability and reliability of IntelliRamp[®] considerably. It goes without saying that many standard bus systems (e. g. Profibus, EtherCAT, etc.) are available as options for your communication as well.

Ramp-supported braking process

The ramp-supported braking process is activated by a signal safe from cable break. The process is performed via a closed control circuit covering speed versus time. Since a proportional control is not concerned here, the system is safe from power breakdown, i. e. it will work even if the power supply fails. The ramp is defined by a rated speed and a braking time considering this speed.

Since a speed which is almost zero cannot be accurately measured any longer, a braking process exists increasing the braking power to achieve the full figure from a certain speed within a period to be defined.

For the ramp a tolerance range is defined which a control is performed in. Falling below this range the brake releases, exceeding this range the brake applies fully. The tolerance range can be flexibly defined. The more precise the definition, the more accurate is the control, but at the same time the more nervous is the reaction.

To avoid impacts in the beginning of the braking process, the control automatically calculates the braking pressure that is theoretically necessary to reach the ramp required. This prevents too fierce braking.

IntelliRamp[®] allows to use three brake ramps which can each be individually programmed and which can be started irrespective of each other.

Type of ramp

Scheme of the ramp-supported braking process

- Continuous deceleration:

With a higher speed the braking cycle takes longer, with a low speed it takes shorter.

- Continuous time operation

The same time is always maintained. Thus, the brake is engaged more strongly if the speed is higher.

- Continuous speed control:

An option to keep the device at a constant speed via the brake only.

Function

Overspeed monitoring:

Triggering the excessive speed reacts flexibly with defined excessive speed barriers. Two values can be defined by which either a message is given to the PLC, a brake ramp is triggered or an emergency stop is activated immediately without performing any control of this braking process. The excessive speed control can be switched on and off.

Reverse lock:

It allows for controlling the speed. In case of an unauthorised rotational motion of the system a braking process is activated or starting of the machine is prevented. A definition of the number of starts preventing a reset if the number is exceeded is to prevent the device from reversing in case of a fracture of the drive.

Joystick control:

This is an option to use the brake, as an example, as a car brake. The more the joystick travels, the more the brake engages.

Online remote operation:

The online remote operation allows both to call the status of the control via a network and to interfere. There is the option to program the control from a distant place.

KTR-STOP[®] RL S Rotor Lock

Hydraulic system

$$M_{L} = z \cdot F_{L} \cdot \frac{D_{eff.}}{2}$$

 F_L = Shear force [kN]

 M_L = Holding torque [kNm]

- z = Number of Rotor Lock
- D_{eff.} = Pitch circle diameter of locking disk [m]

	KTR-ST	OP® RL S	
Weight	Approx. 90 kg	Piston diameter	120 mm
Max. stroke	80 mm	Piston surface fore stroke	113.10 cm ²
Max. shear force 1)	2000 kN	Piston surface back stroke	74.61 cm ²
Max. operating pressure	250 bars	Oil volume per 1 mm stroke	11.3 cm ³
Max. force fore stroke F+	283 kN	Oil volume with 75 mm stroke (full stroke)	848.2 cm ³
Max. force back stroke F-	187 kN	Pressure connection	G 1/4

 $^{\mbox{\tiny 1)}}$ Please note that the shear force refers to the Rotor Lock only.

Oudening	KTR-STOP® RL	S ·	- A ·	- 295 -	- 154
example:	KTR Rotor Lock	Rotor Lock size	Variant	Mounting length	Small taper diameter

Connection dimensions of brake

Housing

Locking disk

KTR-STOP[®] RL M Rotor Lock

Hydraulic system

$$M_{L} = z \cdot F_{L} \cdot \frac{D_{eff.}}{2}$$

 F_L = Shear force [kN]

 M_L = Holding torque [kNm]

- z = Number of Rotor Lock
- D_{eff.} = Pitch circle diameter of locking disk [m]

	KTR-ST	OP® RL M	
Weight	Approx. 150 kg	Piston diameter	120 mm
Max. stroke	80 mm	Piston surface fore stroke	113.10 cm ²
Max. shear force 1)	4000 kN	Piston surface back stroke	74.61 cm ²
Max. operating pressure	250 bars	Oil volume per 1 mm stroke	11.3 cm ³
Max. force fore stroke F+	283 kN	Oil volume with 75 mm stroke (full stroke)	848.2 cm ³
Max. force back stroke F-	187 kN	Pressure connection	G 1/4

 $^{\mbox{\tiny 1)}}$ Please note that the shear force refers to the Rotor Lock only.

Oudering	KTR-STOP® RL	M	- A ·	- 365 -	- 214
example:	KTR Rotor Lock	Rotor Lock size	Variant	Mounting length	Small taper diameter

-F

-E

Ð

I

Connection dimensions of brake

Housing

Locking disk

EMB-STOP RL S Rotor Lock

Electromechanical system

	EMB-ST	OP RL S									
Max. stroke	Aax. stroke 75 mm Motor power										
Max. shear force 1)	2000 kN	Motor voltage	400 VAC, 50 Hz								
Pressure force, axial F+	160 kN	Voltage of electric signals	230 VAC/24 VDC								
Tensile force, axial F-	160 kN	Speed with 50 Hz	160 mm/min.								
Total weight, approx. 2)	150 kg	Size of industrial connector	Han 10B / Han 18EE (male)								
Limit switch signals, standard	locked, unlocked										

 $^{\rm 1)}$ Please note that the shear force refers to the Rotor Lock only. $^{\rm 2)}$ Weight with L = 355.

	ſ	EMB-STOP RL	S	E	355	CON
xample:		EMB Rotor Lock	Rotor Lock size	Electrical application	Mounting length (L)	Contact form (see table)

Connection dimensions of brake

For continuously updated data refer to our online catalogue at www.ktr.com

EMB-STOP RL M Rotor Lock

Electromechanical system

	EMB-ST	OP RL M										
Max. stroke	Max. stroke 75 mm Motor power											
Max. shear force 1)	4000 kN	Motor voltage	400 VAC, 50 Hz									
Pressure force, axial F+	160 kN	Voltage of electric signals	230 VAC/24 VDC									
Tensile force, axial F-	160 kN	Speed with 50 Hz	160 mm/min.									
Total weight, approx. 2)	190 kg	Size of industrial connector	Han 10B / Han 18EE (male)									
Limit switch signals, standard	locked, unlocked											

 $^{\rm 1)}$ Please note that the shear force refers to the Rotor Lock only. $^{\rm 2)}$ Weight with L = 355.

.	EMB-STOP RL	М	E	355	CON
example:	EMB Rotor Lock	Rotor Lock size	Electrical application	Mounting length (L)	Contact form (see table)

Connection dimensions of brake

TRA

coradial

trapezoid

trapezoid

KTR-STOP® NBS Hubs with brake disks

Description of product

						KTR-ST	OP [®] NBS							
				Dimensi	ons [mm]				C	ap screws DI	N EN ISO 476	62	May broking	
Size	Finish	bore d		_	_	_						Tightening	torque 1)	
	min.	Max.	DH	D ₁	D ₂	D3	1	12	Thread M	z = number	pitch	torque I A [Nm]	[Nm]	
65	22	65	135	94	96	116	166	135	M10	12	16x22.5°	67	3000	
75	30	75	160	108	112	136	166.5	135	M12	15		115	6700	
90	40	100	200 142		145	172	206.5	175	M16	15		290	16000	
100	46	110	225	158 165 195 206.5 175		175	M16	15]	290	18700			
110	60	125	255	178 180		218	212	180	M20	15		560	32700	
125	60	145	290	206	215	252	212	180	M20	15	20x18°	560	38100	
140	60	165	200	0.05	0.45	000	050 5	220	MOO	15		560	42700	
140	60	105	320	230	240	202	202.0	210 ²⁾	M20 15			560	42700	
160	00	100	070 070 00		000	205	0505	220	MOA	15		970	75200	
180		190	370 270 280		200	325	202.0	210 ²⁾	IVI24 15			970	75200	
180	85	220	420	315	330	375	252.5	210 ²⁾	M24	18 24x15°		970	10400	

 $^{\rm D}$ Referring to screw connection of brake disk; the shaft-hub-connection has to be inspected separately by the customer. $^{\rm 2)}$ Dimensions with a width of brake disk b1 of 40 mm.

Outering	KTR-STOP [®] NBS 110	800x30	Ø100
example:	Type/size	Brake disk ØAxb ₁	Bore d

			Weights and	mass mome	ents of inertia	3							
Size	65	75	90	100	110	125	140	160	180				
		Weight 1) [kg]											
Brake disk ØAxb1				Mass r	noment of inertia ¹) [kgm²]							
255-20	25.6												
355x30	0.349												
400-20	31.4	33.4											
400x30	0.556	0.566											
450×20	38.7	40.6	49.3										
450x30	0.885	0.895	1.009										
500-20		48.7	58.1	59.0	64.1								
500x30		1.354	1.506	1.439	1.511								
560×20			69.9	69.9	75.0								
560x30			2.335	2.204	2.277								
620+20			85.3	84.1	89.2	96.6							
830,30			3.703	3.468	3.540	3.681							
710-20					107.5	115.0	129.6	145.4	168.2				
710x30					5.603	5.743	6.002	6.490	7.390				
800-20						138.2	152.8	168.6	191.4				
800x30						9.063	9.322	9.810	10.710				
000-20							181.8	197.7	220.5				
900x30							14.586	15.073	15.973				
900×40							224.3	239.0	260.0				
500x40							19.225	19.690	20.543				
1000+40							267.6	282.2	303.2				
1000x40							29.016	29.481	30.335				

 $^{\mbox{\tiny 1)}}$ Mass moment of inertia/weight of hub with brake disk referring to maximum bore.

Notes

															_		
			_	_			 	 	 	 		 	 	 			
			_			 											
			_			 	 						 	 			
			-	_													
				_												 _	
			_				 		 							 	
			_	_	 	 	 	 	 		 		 	 			
			_									 					
			1														
																	_
			-														
			_	_													
			_						 								

Notes

																				_
		 	 			 	_								 	 			 	
								-	-						 					
		 	 			 									 	 	-		 	
		 	 			 	_						_		 	 	_		 	
		 	 				_								 				 	
L		 				 	_					-	_		 	 			 	
L		 				 	_		-			_	_		 	 				
								-	1											
																	-			
		 	 		 	 	_								 	 	-		 	
		 					_		-			_			 				 	
									-											
		 	 				_		_						 				 	
			 	 							 		_		 		-			
									-			-								
									1											
-							_	-	-						 		-			
								-							 	 			 	
								-				-	_			 				
		 				 	_	-							 	 			 	
									1			-								
L									1											
								-				-				 		-+		
-								-	-			-	-							
							_	-				-	_		 	 				

Headquarters:

KTR Systems GmbH Carl-Zeiss-Straße 25 D-48432 Rheine Phone: +49 5971 798-0 +49 5971 798-698 Fax. and 798-450 E-mail: mail@ktr.com Internet: www.ktr.com

KTR Brake Systems GmbH Competence Center for Brake Systems Zur Brinke 14 D-33758 Schloß Holte-Stukenbrock +49 5207 99161-0

Leiter Vertrieb Bremsen Industrie Thomas Wienkotte, Dipl.-Ing. (FH) Am Rott 18 D-50171 Kerpen Phone: +49 2237 971796 Mobile: +49 172 5859448 E-meil: twienkte@ktr.com

t.wienkotte@ktr.com F-mail:

KTR worldwide:

Algeria

KTR Algérie +213 661 92 24 00 +33 4 78 64 54 66 Phone: Phone: E-mail: ktr-dz@ktr.com

Brazil

KTR do Brasil Ltda. Rua Jandaia do Sul 471 -Bairro Emiliano Perneta Pinhais - PR - Cep: 83324-440 +55 41 36 69 57 13 Phone:

E-mail: ktr-br@ktr.com

Chile

KTR Systems Chile SpA Calle Bucarest 17 Oficina 32 Providencia Santiago de Chile Phone: +56 23 22 46 674 +56 9 44 75 57 02 Mobile: E-mail: ktr-cl@ktr.com

China

KTR Power Transmission Technology (Shanghai) Co. Ltd. Building 1005, ZOBON Business Park, Gate 2, 1005 Wangqiao Road Pudong Shanghai 201201 +86 21 58 38 18 00 +86 21 58 38 19 00 Phone: Fax: E-mail: ktr-cn@ktr.com

Czech Republic

KTR CR, spol. s r.o. Brněnská 559 569 43 Jevíčko Czech Republic Phone: +420 461 325 014 E-mail: ktr-cz@ktr.com

Denmark

KTR Systems Danmark ApS Vejlsøvej 51, Bygning N 8600 Silkeborg +45 39 39 10 50 Phone:

ktr-dk@ktr.com

F-mail: Finland

KTR Finland OY Tiistinniityntie 4 FIN-02230 Espoo Phone: +358 2 07 41 46 10 E-mail: ktr-fi@ktr.com

France

KTR France SAS 5 Chemin de la Brocardière CS 71359 F-69573 DARDILLY CEDEX +33 4 78 64 54 66 Phone: Fax: +33 4 78645431 E-mail: ktr-fr@ktr.com

India

KTR Couplings (India) Pvt. Ltd., T - 36 / 37 / 38 / 39, MIDC Bhosari, Pune Maharashtra 411026 +91 20 27 12 73 24/25 +91 20 27 12 73 23 Phone:

Fax: E-mail: ktr-in@ktr.com; india.sales@ktr.com

Italy KTR Systems GmbH Sede Śecondaria Italia Via Giacomo Brodolini, 8 I - 40133 Bologna (BO) Phone: +39 051 613 32 32 +39 051 298 55 77 Fax: E-mail: ktr-it@ktr.com

Japan

KTR Japan Co., Ltd. c/o The Sumitomo Warehouse Co., Ltd. Kobe Branch, Chuo Logistics Center L-6 7-14 Minatojima, Chuo-ku, Kobe City, Hyogo 650-0045 Japan

Phone: +81 783818401 +81 789458560 Fax: E-mail: ktr-jp@ktr.com

Korea

KTR Korea Ltd. #604, Songwon bldg., 89-10, Galmaejungang-ro, Guri-si, Gyeonggi-do, 11901 Korea +82 3 15 69 45 10 +82 3 15 69 45 25 Phone:

Fax: E-mail: ktr-kr@ktr.com

Netherlands and Belgium KTR Benelux B. V.

Postbus 87 Oosterveldsingel 3 NL-7558 PJ Hengelo (O) +31 74 2553680 Phone: E-mail: ktr-nl@ktr.com

Norway

KTR Systems Norge AS Lahaugmoveien 81 N-2013 Skjetten Phone: +47 64 83 54 90 E-mail: ktr-no@ktr.com

Poland

KTR Polska Sp. z.o.o. ul. Czerwone Maki 65 PL–30-392 Kraków Phone: +48 12 267 28 83 E-mail: ktr-pl@ktr.com

Singapore

KTR Systems Singapore Pte. Ltd. 2 Venture Drive #13-02 Vision Exchange Singapore 608526 Phone: +65 69 04 12 32

Mobile: +65 96 33 66 92 E-mail: a.low@ktr.com

South Africa

KTR Couplings SA (Pty) Ltd. 28 Spartan Road, Kempton Park, Spartan Ext. 21, Johannesburg, Gauteng Phone: +27 87 260 6263/4 Fax: +27 82 922 4365 E-mail: ktr-za@ktr.com

Spain and Portugal

KTR Systems GmbH Estartetxe, nº 5-Oficina 322 E-48940 Leioa (Vizcaya) Phone: +34 9 44 80 39 09 +34 9 44 31 68 07 Fax: E-mail: ktr-es@ktr.com

Sweden

KTR Sverige AB Kivra: 556585-4071 S-106 31 Stockholm Phone: +46 8 6250290 E-mail: info.se@ktr.com

Switzerland

KTR Systems Schweiz AG Bahnstr. 60 CH-8105 Regensdorf Phone: +41 43 311 15 55

+41 43 311 15 56 Fax: F-mail: ktr-ch@ktr.com

Taiwan KTR Taiwan Ltd.

No. 30-1, Gongyequ 36th Rd., Xitun Dist., Taichung City 40768, Taiwan (R.O.C) +886 4 23 59 32 78 +886 4 23 59 75 78 Phone: Fax: ktr-tw@ktr.com E-mail:

Turkey KTR Turkey Güç Aktarma Sistemleri San. ve Tic. Ltd. Sti. Kayışdagı Cad. No: 117/2 34758 Atasehir -İstanbul +90 216 574 37 80 Phone: E-mail: ktr-tr@ktr.com

United Kinadom

KTR U.K. Ltd. Robert House Unit 7, Acorn Business Park Woodseats Close Sheffield United Kingdom, S8 0TB +44 11 42 58 77 57 +44 11 42 58 77 40 Phone: Fax: E-mail: ktr-uk@ktr.com

USA.

KTR Corporation 122 Anchor Road Michigan City, Indiana 46360 +1 2 19 8 72 91 00 +1 2 19 8 72 91 50 Phone: Fax: E-mail: ktr-us@ktr.com

Summary of literature

No matter if a perfect drive, a brake that takes effect, space-saving cooling or accurate hydraulics is required, if on land, by sea or at an airy height - KTR's product portfolio is just as manifold as its applications. The following catalogues and leaflets provide an overview. Available at www.ktr.com

Product catalogues

Hydraulic components Belhousings Damping elements Cooling systems Ol tanks

ATEX leaflet

Explosion Protection The ATEX standard and the KTR programme for explosion-proof applications

Company leaflet

Achieving Great Things Together

Headquarters KTR Systems GmbH

Carl-Zeiss-Straße 25 D-48432 Rheine Phone: +49 5971 798-0 Fax: +49 5971 798-698 or 798-450 E-mail: mail@ktr.com Internet: www.ktr.com

KTR Brake Systems GmbH

Competence Center for Brake Systems D-33758 Schloß Holte-Stukenbrock Phone: +49 5207 99161-0 Fax: +49 5207 99161-11 E-mail: info_kbs@ktr.com Internet: www.ktr-brake-systems.com

